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STUDY OF NONPARAMETRIC TECHNIQUES

FOR ESTIMATING RELIABILITY

AND OTHER LIFE QUALITY PARAMETERS

by

V.K. Murthy

This study was undertaken to carry out a comprehensive investigation of

procedures for estimating probability distributions of llfe lengths, as

well as the corresponding probability densities and hazard functions, in

situations where little or no information is available on the family of

the underlying failure laws. In carrying out this study, nonparametric

techniques were developed for obtaining estimates and confidence bands for

various kinds of samples of life lengths--i.e., for random, censored, and

truncated samples. Large-sample techniques of this kind are derived and

discussed in Chapters II-IV. A procedure for optimizing the methods of

estimation described in Chapter II is recounted in Chapter VIII.

Discontinuities of the life distribution function correspond to times at

which the devices considered are exposed to increased "instantaneous

hostility." A statistical test is proposed in Chapter V which makes it

possible to determine whether such moments of increased instantaneous

hostility are present.



Exact small-sample probability distributions as well as well as the

corresponding asymptotic (large-sample) distributions to selected R_nyl-type

statistics are presented in Chapter VI. Extensive numerical tabulations

of these distributions have been performed, and results are summarized in

compact tables ready for practical use.

A family of llfe distributions with a number of interesting properties is

studied in Chapter VII. Applications of this family of failure laws

are postponed to a future study.



C_ II

ESTIMATION AND CONFIDENCE BANDS F(_ RANDOM SAMPLES

C.oncepts and Notations

The concepts and definitions introduced pertain to the performance of a

component. It is assumed that failure of the component is well defined and

that the time frum inception to failure is observable and measured. Evidently

these concepts and definitions apply to any system of components in which

failure of the system is well defined and the time to failure is measured.

To establish a base for the principal results derived in a later section, the

remainder of this section will be devoted to a derivation, accompanied with

the explicit definition of key notions and terminology of a ccmponent's

distribution function of time to failure and the associated hazard function.

Let the noanegative real number T denote the observed time to failure of a

component. Other conditions remaining the same, if identical experiments

are conducted to determine the respective times to failure on identical speci-

mens of a component type, the actual observed times to f_lure need nc_ be

the same, even for identical experiments. In this sense, the observed time

to failure T is a random (stochastic or chance) variable. For any t >0, the

event T < t is the event that the observed time to failure is less than or

equal to a designated time instant t, _, equivalently, the event that the item

has failed by time t. Let

F(t) = P(T_ t) .

F(t), which is the probability of the event that the item has failed by time t,

is the distribution function of the random variable T. The complementary
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event T > t, t _ O, is the event that the observed time to failure is greater

than t c_, equivalently, the event that the item survived time instant t. The

probability of this event is denoted by R(t), where

R(t) = P(T >t) = 1 - F(t) . (2)

R(t) is custam_rily called reliability of the item at time t. Assuming that

the singular part of F(t) is identically zero, F(t) can be uniquely decomposed

into (far example, Cramer [4, pp. _2-_31)

FCt) = FiCt) + F2(t ) , (3)

where Fl(t ) is an everywhere absolutely continuous function and F2(t ) is a pure

> O, at the points t = t,step function with steps of magnitude, say, St_ S

= 0, l, 2, ...., and both Fl(t ) and F2(t ) are nondecreasing and uniquely

determlned.

Let

 l(t) = f(t)dt, (4)

where f(t), which is the derivative of the absolutely continuous part of the

distribution function F(t), is called the probability density function, and the

symbol, dr, refers to an infinitesimal time increment.

Let

A : t <T _t + dt

B :T>t . C_)

A stands far the event that the component fails during an instantaneous

neighbc_hood of the time instant t, while B stands far the event that the
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component survived time t. Clearly

(6)

because the event A is contained in the event B; symbolically

ACB.

Now, at a point of continuity t of the distribution F(t)

and

for all t _0.

P(A) = f(t) dtl
I

P(B) : 1-F(t)

}
(7)

The left-hand side of equation (6) denotes the conditional probability that

the item, having survived time t, fails between t and t + dt, t being a point

of continuity of the distribution F(t). Let z(t)dt denote the left-hand side

of equation (6), where, in view of equation (7),

z(t)dt
I l'F(t)

(8)

at a point of continuity t of the underlying law of failures F(t).

The function z(t) is called the hazard rate or the conditional failure rate,

or sometimes, simply the failure rate.

A Basic Decomposition of the Cumulative Hazard Function

The function, Z(t), is called the cumulative hazard function, where

Z(t)-- log (i - F(t)) (9)
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and F(t) is the underlying distribution function of time to failure given by

equation (3). Assuming the singular part of the distribution to be identically

zero, F(t) has the representation given in (3), namely,

•(t)-rl(t)+ r2(t), (lo)

where Fl(t ) is the absolutely continuous part, and Fe(t ) is the pure discrete

part (step function) of the distribution F(t). Since F(t) is a distribution

funct ion,

which implies

F(0) = FI(0) + FZ(0) - 0,

FI(0 ) = 0, F2(0 ) = 0

i
since F and F 2 are nonnegative. Also

F(_) =FI(_ ) + F2(_ ) = 1.

Substituting equations (10) and (lZ) in (9), one obtains

z(o = - log (_'1(oo:)+ _z(_l- _'llO - _z(tl)

(1i)

(12)

(13)

for t < _, where T is the smallest integer such that FI(= ) = Fl(t ) for

t m T; i.e., F is strictly discrete for t _ T. This v can be O.



For t _ % we have

z(t)=- I_ (F2(®)- F2(t)).

To decompose Z(t) into its absolutely continuous part and pure step function

c_ discrete part, consider for t < v:

I

dZ(t) = f(t) dt - d _og (1 +Fl(OO ) - Fl(t )

d Fl(t )where f(t) = _-_

(14)

At this stage, it is interesting to notice that while

t

f f(T )d_Fl(OO ) - FI(T)

o

is the cumulative hazard function associated with Fl(t), the absolutely con-

tlnuous part of the distribution function F(t), f(t)

being the hazard rate corresponding to Fl(t), the function

t

f Fl(OO) - FI(T )

0

does not constitute the absolutely continuous part of the cumulative hazard

function Z(t) associated with the entire distribution F(t). The reason for

this is that



contains an absolutely continuous component which must be added to

f(t)dt

F1(oo)- _1(t)

to yield the absolutely continuous part of Z(t), the cumulative hazard

function co_respondirg to F(t).

Now

d
flog (1 +

F2(oo ) - F2(t)_
1rl(OO - Fl(t) _

_ f(t)dt F2(oo) - Fz(t ) dF2(t )

1 - F(t) Fl.(Oo ) - Fl(t ) 1 - F(t)
(15)



Substituting (15) in (14), it is deduced that

dZ(t)-F1(_o)_F1(t ) I- ilF(t) /

dF2(t)
+

1 - F(t)

Hence,

where

dFz(t) .
f(t)dt+

1 - F(t) 1 - F(t)

Z(t)= z1(t)+ Zz(t),

(16)

(17)

t

f(T)dTz1(t)= I F(.)

O

(18)

and

t ldFz(T)F-[_)_ U(tl - tj)Stj
Z2(t) = f__J = F(tj) '

O j=O

U(x) being the Heaviside Unit Functlcn with

(19)

=ifc_xmo

= o, otherwise.

Clearly, _(t) and Z2(t) are, respectively, the absolutely contlmlous part

and pure discrete part of the cumulative hazard function Z(t) associated with

the distribution function of time to failure F(t).

Since Z(t) exists and is equal to - log (I - F(t)), the existence of either Zl(t )

or Z2(t) must be proved before the representation (17) is a valid decomposition

of z(t).
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Clearly, Z(t) = - log (1 - F(t))is non-decreasing, Z(0)= 0, Z(+_) - + _, and

Z(t) - + _ far t -F(t) -i.

To this end, consider

t

Zl(t) = /

O

f(v)dT

I - F(T)

Write, for t < T_

f(t)
l - F(t)

i(oo) - Fl(t 1(°°)- Fl(t) + Fz(oo) - Fz(t )

Now f(t)
Fl(OO ) - Fl(t)

is absolutely integrable, since it is positive, and fc_ t < _ (see p.6),

and

Therefore,

t

f(T)
/ FI(9O) - Fl(T)dr= - iog (Fl(OO) - Fl(t)) ,
0

Fl(OO ) - FI(t )

Fl(OO ) - Fl(t ) + F2(oo ) - F2(t )
-<I .

f(t) < f(t)

I - F(t) Fl(OO ) - Fl(t ) '

which is absolutely integrable.
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Hence_

f(t)
i - Z(t)

is also integrable and therefore _(t) exists far t < _.

t

For t _ T: f(t) - O, hence _(t) = f f(t)l- at. zl(v)- zl(+-).
.,#,

0

The proof of the basic decomposition (17) of Z(t), the cumulative hazard

function of F(t), is thus complete.

Estimation of the Densit_ of the Underl21n _ Law•of

Failures at a Point of Continuity

Let F(t), the distribution function of time to failure T, be given by

F(t) = Fl(t) + F2(t) ,

where Fl(t ) is the absolutely continuous part, and F2(t ) is the pure step

function with steps of magnitude, S at the points t = ttq _ = Op l, 2, ..

Now let the random variable T denote the observed time to failure of an

item. Let T1, T2,... Tn denote the actual observed times to failure of n

identical items put to a llfe testing experiment. In other words,

T1, T2, ... Tn are the observed values of n independently identically dle-

tributed random variables with

CO

(20)

P(Ti< t) = F(t), i = l, 2,... n.



12

Since Fl(t ) is absolutely continuous,

t

= [ f(T) aT (21)El(t)

O

where f(t) is the probability density functioa at a point of continuity t of

the distribution function F(t).

Let

i [number of observations g t among Tl, T2, ... Tn] . (22)Fn(t) =

Clearly, the randQm variable Fn(t), which is the empirical distribution

function based on the observed sample, is a bincmlally distributed random

variable with expectation and variance given by

E (Fn(t)) = F(t)

Var (Fn(t)) = F(t) (1-n F(t)) (23)

A weight function K(c0) is called a window if it satisfies the following

conditions:

oo

5

K(co) -" O,

K(_o) = K(-co)

lira _oK(to) =

I_l --- oo

K(¢o) d_o : 1 .

O,

(24)
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Propose
oo

fn(to) = / Bn

O

K(Bn(t - to))dFn(t)

n
B

nI=-_-

j=l

K (Bn(Tj - to) ) , (25)

as an estimate of the density f(t o) of the underlying law of failures at a

point of continuity to of the distribution function of time to failure F(t),

where {Bn} is a sequence of nonnegatlve constants depending on the sample

size n such that

= = (26)liraBn
n-_

Asymptotic Unbiasedness of the Estimate fn(to)

Taking expectation on both sides of (25) one obtains (since the observed

times to failure T1, T2,... Tn are independently identically distributed with

the common distribution F(t))

nK(Bn(T_-to'
j=l

It will now be proven that

o0

:/ BnK(Bn(t-to))dFIt).
0

(27)

lirn E (fn(to)) = f(to) ,
n-_oo

(28)



at a point of continuity t of the distribution F(t) where the density f(t) is
O

also continuous. The meaning of (28) is that as the sample size n increases

indefinitely the mean value of the estimate fn(to) converges to its true value

f(to) , which makes the estimate asymptotically (far large samples) unbiased.

To prove (28), the following lemma is needed.

Lemma 1

Let K(t) be a window satisfying (24). Let ti(i = o, 1,2, ....) be the points

of discontinuity of the distribution F(t), and let S_ be the magnitude of the

jump inF(t)at t B ti. Further, let An(t ) mBn K(Bn(t- to))where the

density f(t) is also continuous at t' .
O

Then

0o

lira J(An} = lira / An(t) dF(t) : f(to) ,
n-_0o n-b0o

o

(29)

provided the series

S.

• jti-toI converges.

(30)

(Note that this assumption is used only far (36) and (38).)
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Proof

Now

J(An) = /

0

oo

BnK(Bn{t- to) / dF{t)

oo

/
0

BnK(Bn(t- to)) dFl(t)

oo

/
0

BnK(Bn(t- to) ) dFz(t), (31)

where Fl(t ) and F2(t ) are, respectively, the absolutely continuous part and

the discrete part of the failure distribution F(t).

Now,

co oo

f BnK(Bn{t - to)) dFl{t) = /

o o

BnK(Bn(t- to) ) f(t)dt.

Put

x - Bn(t - tO ) .

Then,

oo

/
0

BnK(Bn(t- to))f(t)dt :

co

/ Kxf(o
-B t'

n o

dx. (32)
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Taking limit as n _ _ on both sides of (32) we have, since f(t) is assumed

, that
continuous at to,

n-*colim/ BnK (Bn(t- to, dF 1 (t) = -o0 K(x) f (to)dX

0

co

= f(t o) f K(x) dx
--CO

= f(to), (33)

at a point of continuity t' of F(t) and also of f(t).
O

In view of (33), the proof of Lenmm i is complete if it can be shown that

oo

lira /
n_oo

o

BnK(Bn(t _ to))dFz(t ) = O, (34)

!

at a point of continuity to

To show (3&), consider
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0o

/
O

B
n K(.n tto )d Z tl:Z Bo

i

K (Bn(t i - to))S i

B n K (Bn(t i -to))S i

i<m

B n K (Bn(t i -to))S i

i>m

= _i +_Z , say • (35)

Since t' is a point of continuity, ti # t' for all i. Because It K(t) l - 0 as
0 0

t _ + _, an N > 0 can be chosen such that
0

IBn (ti -to)K IBn(ti- to) ) I < c for n > N O a1_d all i < m
(35')

where ¢ is positive and arbitrary.

Hence 2

i<m

S.

1

ti -tol
_<_A

(36)

where
S.

A = ]ti _ tol < oo
i

, by assumption.
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Also, since t K(t) _ O) as Itl _ _, it follows that It K(t) I is bounded.

Hence _t K(t) I _ Ko (finite) for all t. Therefore,

.K I2 o Iti- t'
i>m o I

(37)

SiSince - t'_- Iti o

that

converges by assumption, an integer m can be chosen such

S.

7 i
Iti -_'ol < _'

i>m

(38)

where ¢ is positive and arbitrary.

Note that one has to choose m first, so that (38); then N, so that (30').

Therefore, combining (39), (36), (37), and (38) we discover that

lim _ B n
n-_oo .

1

K (Bn (ti- to))Si =0, (39)

which proves (34).

This completes the proof of Lemma i.

Remark i

Note that if the points of discontinuity of the distribution function are

isolated points the condition imposed in the lemma, namely,
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is autcs_ticallysatlsfled.

For, in this case,

Inf I ti-t' I >0
i o

' and consequently,for every point of continuity to

S.

1

i i

(39)

where

t" = Inf I ti - to l.
i

Since in practice only isolated discontinuities are encountered in the law of

failures, the assumption

S.

i

is always satisfied for applications.

Remark 2

If as assumed inLemma 1 K(t) does not satisfy (24), I_ K(t) dt # i but is

finite, i.e., K(t)dt < % then the limit in (29) will be

_CO

CO

lira J (A n ) = f(t o)/ K(t) dt.
r i-_cO - co

(40)
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Nowapplying (29) of Lemmai to (28) it is at once clear that

llm E (fn(to)) = f(to) __ K(t) dt (41)

at a point of continuity to of F(t) and f(t).

The Consistency of the Estimate fn(to) for Estimating f(to)

The consistency of fn(to) will be now established by showing that the variance

of fn(to) goes to zero as the sample size n tends to infinity. This, together

with the property of asymptotic unbiasedness proved earlier, will establish

the consistency.

Taking variance on both sides of (2_), _ obtain

Var fn(to)= ..n E 2(Bn(T- tO) -E2 (Bn(T - to)) (42)

42 one obtains, in view of (28),Taking limit n _ _ on both sides of ( ),
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lirn Var fn(to) = lirn
n-_c0 n --PcO

= lira _ K 2(B n(t - to) dF(t).
n--p. c0

o

(43)

We now observe that the functio_ _(t) has all but _e af the properties of

IY/=

K(t), .name _(t)_t # i, but that it is finite. Le-_ i, theref_e,

hold_f_ K2Ct), _th limit as given by (4O).

Therefcre,

lim Bn J_

0
n-_ co

K z to))dF (t) f(to)f_K z (t)dr,(Bn(t - = (44)

at a point of continuity to of the distribution F(t) and also of the density

f(t). Combining (43) and (45), we discover that

co

limn..co(B-n) Yar Ifn (t°)) = f(t°)_-c°KZ (t)dt'

(45)

ofz(t)_ _(t).
at a point of continuity to

Assuming now that B
n

a way that

_ as the sample size n _ _ more slowly than n in such

n-_llmI--_-)=o, (_)
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a sufficient condition far consistency, one obtains in view of (_) that.

[fn(to) 1 =0 • (47)lira Var

n -e@o t J

(28) and (47) together establish the consistency of the estimatc_ fn(to) for

estimating the density f(to) at a continuity point to of F(t) and f(t).

Estimation of the Reliabilit_ Function R(t I

The empirical reliability function Rn(t ) based on observations is defined by

Rn(t) = i Fn(t) ' (48)

where Fn(t ) is the empirical distribution function given by (22).

i [number of observations > t among TI, T2, ... Tn] _Rn(t) =

Therefore,

where TI, T2,... Tn are the observed times to failure of n identical items

subjected to a life testing experiment.

Evidently Rn(t ) is a binaninally distributed randnm variable with mean and

variance given by

E(R n(t)) = RCt),

Var [R n(t) I = R(t) (1-n R(t))

(50)

at all points t, whether they are points of continuity or not of the underlying

law of failures F(t). The meaning of (50) is that the empirical reliability

function Rn(t) based on the observations T1, T2,... Tn is unbiased and con-

sistent for estimating the true reliability R(t) at all points of time t.
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Another class of estimatars R_t) far estimating the reliability function R(t)

is now proposed and its properties examined. Let us start with the estimate

fn(t) given by (2_), which was earlier shown to be asymptotically unbiased and

consistent far estimating the density f(t) at all points of continuity t of

F(t) and f(t)where

n
B

= ---n-n I K(Bn(T j - t)).fn (t) n

j=l

Now define the class of estimators

(51)

= fn (t)dt

Bn- -_-- (B n (Tj

j=l t

- t))dt

It can now be proven that at a point of continuity t of the distribution F(t)

(52)

Let

lira E (R:(t)) = R (t)
n---co

[nVar (R:(t))] = R(t) (1 - R(t)).

t

G(t) = f_c0K(t}dt.

(53)

(54)

(55)

In terms of G(t), R:(t) can be written as

n

R* 1 _ G (Tjn(t) = H (Bn

j=l

- t)) (56)
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Taking expectation on both sides af (56), the following is obtained:

(")f%E R n(t) = (Bn(r- t) dF(r)

O

Now

=*-f%n K(Bn(T-t_ F(T) dT.

O

nK(B n(*r- t))F(r)dT = K(X)F t + dl.

o -B t
n

(57)

(58)

If t is a point of continuity of the distribution function of time to failure

F(t), one obtains, taking limit as the sample size n _ _ on both sides of (58),

/_ (Bn ( ) f_
lira g K r- t) F (r) dr = F (t) K(X) d)_ = F (t)

n " (59)
n--_oo.y

0

Combining (57) and (59), we discover that

" ))lim E (R;(t : 1 - r(t) : R (t),

n..._co

(60)

at a point of continuity t of the underlying law of failures F(t). Equation

(60) establishes the asymptotic unblasedness of Rn*(t) far estimating R(t) at

every point of continuity.

Taking variance on both sides of (56), _ find that
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Now

[--1:i •)]Vat Rn(t } n n(T - t)

-!
n (61)

0

after integration by parts.

_S

CO

_-_f G(Bn(T-t))BnK(Bn(T-t 0 F('r)dT,
0

Substituting Bn(m- t) = _, (62) can be written

OO

=i-z fG(
-B t

n

(62)

(63)

Taking limit as n - _ oa both sides of (63) gives at a point of continuity t

of the distribution F(t)

l)rn E (G2 (Bn(T - t)))

oo

= 1 - 2 F(t) / G(k) K(k) dk

= I - F(t) = R(t),

CO

since /
_ 1

G(X) K(k) dk -_.

(64)
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Combining (57), (60), (61) and (64), we discover that

lira InVar (Kn*(t))l = K(t) "EZ(t)
I"I_-,-o0

(65)

at every point of continuity t of the underlying distribution F(t). Equations

(60) and (69) together establish the consistency of the class of estimators

Rn*(t) for estimating the reliability R(t) at every point of continuity t of the

underlying law of failures F(t).

Also, at a point of continuity t, the estimate Rn(t ) (which is the empirical

reliability function)and the class of estimators IR*(t) have the

!

s_un8

!

asymptotic variance and order of consistency. In this sense, both Rn(t ) and

R*(t) are asymptotically equivalent. But, for any given sample (finite), for a

given window K(t), the corresponding Rn*(t) may be more efficient than the

empirical reliability function Rn(t) for estimating the reliability R(t) at

time t.

Having thus established the equivalence of the estimate Rn(t ) and the class of

Rn*(t) at a point of continuity t, we will examine in a subsequentestimators

section of this report (Chapter V) what happens to these estimators at a

point of discontinuity of the underlying law of failures. In this case, it is

shown that the estimators are not asymptotically equivalent and, indeed,

provide a method of estimating the probability of failure of the item due to

undergoing instantaneous hostility at any such time instant.
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Estimatica of the Hazard Rate at a Point of Continuit_

t of the Law of Failures, F(t)

The basic decomposition thearem of the cumulative hazard function far any

arbitrary law of failure, F(t), establishes that at any point of continuity

t the unique derivative of the absolutely continuous part of the cumulative

hazard function (also called the hazard rate) is given by

f(t) =z(t) - I - F(t) " (66)

The interpretation of z(t) dt is, as usual, the probability that the item having

survived time t fails between t and t + dt.

Propose Zn(t ) as an estimate of the hazard rate z (t) at a point of continuity t

of the distribution F(t), where

fn(t)

Zn(t)- Rn(t ) . (67)

fn(t) and Rn(t) being, respectively, given by (23) and (49). It has been

shown earlier that fn(t) is consistent far estimating the density f(t) at all

continuity points, i.e., fn(t) converges in probability to f(t). In symbols,

P1im fn(t) = f(t),
n_.co

(68)

the symbol "Plim" standing far probability limit in the sense of convergence

in probability. Also from (90), note that Rn(t ) is consistent for estimating

R(t) at all points t, i.e.,

Plim Rn(t ) = R(t)
n-,.co

(69)
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Since Zn(t ) is a rational function of fn(t) and R (t) and since the probability
n

limit of the denominator in Zn(t) does not go to zero except at t = _, we have

(using a well known convergence theurem of Cramer [4, p. 294])

f(t)
Plim Zn(t ) = _ = z(t).
n--co

(70)

The meaning of (70) is that the estimator Zn(t ) is consistent for estimating

the hazard rate z(t) at time t.

Also proposed is the class of estimators Zn(t ) for estimating z(t) where

z "(t)- fn(t)
n .,. ID

Rn(t)

(71)

fn(t) and R:(t) being respectively given by (29) and (92). Since R:(t) and

Rn(t) are asymptotically equivalent for estimating the reliability R(t), where

t is a point of continuity of the distribution F(t), it follows that z:(t) is

also consistent for estimating z(t) and that both Zn(t ) and z:(t) are asymptoti-

cally equivalent fur estimating the hazard rate z(t) at time t, t being a point

of continuity of F(t).

Asymptotic Ncrm_it[ and Confidenc e Bs_ds for f(t), R(t), an_ z(t)

It is now possible to investigate the reliability of anytime t, as well as

the question of what happens to the distributions of the estimates fur the

density of the underlying law of failures at a point of continuity, and finally

the hazard or failure rate at a point of continuity of the underlying law of
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failures. In particular, it will be shownthat these distributions are

asymptotically Gaussian and thus provide the basis for large-sample confidence

bands for these llfe quality paramenters at any desired level of confidence.

In order to pr_e the asymptotic ncmum_lity, the following lemma is needed.

Lemma 2

Let VI, V2, ... Vn,... be a sequence of independently and identically

distributed random variables. Define the sequence {Sn} where

n

-- _ "_° °

Sn n j

j=l

Then a sufficient condition for the sequence {Sn} to be asymptotically normally

distributed is that for same 8 > 0

_ E(v )iz+6

lira nS/2(Var (Vn)) I+6/2

=0. (72)

For proof of this well-known lem_a, refer to Parzen [9, p. 1019].

Asymptotic NcEmmlity of the Estimate fn(t) and Associated

Confidence Bands for the Density f(t)

The estimator fn(to) for estimating the density of the underlying lawof

failures F(t) at a point of continuity to is given by
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CO

no fo_n_n ol_n
n

B n
n_

j=1

K(Bn(T j " to) ) • (73)

Now (73) can be written as

n

_ I
fn(to) - _ _.Vj ,

j=l

where

Vj = BnK (Bn(Tj - to) ), j = 1, 2, . . . n. (74)

The sequence {VjJ given by (74) is independently and identically distributed

as a random variable

V(n) = BnK (Bn(T - to) ) . (75)

Applying Len_a i to the random variable V(n) given by (75), we discover that

cO

EIV(n)I Z+8~ B'+6/2n '(to) f (_(_))_+_
-CO

dt ,

Var(V(n))Bnf(to)fK2(t)dt (76)

at every point of continuity t
O

the density f(t).

of the underlying law of failures F(t) and
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In view off K(t) dt = 1,
-cO
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cO 2+,5

f (K(t)) dt <_, for all 8_> o.
-cO

B
n

------ _0 as n _ _ it is at onceTaking (76) and (77) and the condition that n

clear that V(n) given by (75) satisfies the condition (72) of Lepta 2. It is

thus proved that the estimator fn(to) given by (73) is asymptotically narmal

for estimating f(t o) at every point of continuity to of F(t) and f(t); that is

(77)

{ ('_n)( )col(t)__ f(t) 2) } 1 I_ _

1
i/z - _ yZ

lim P n __

n-_cO if(t) 1. KZ(T)dTll / <x ,_. coe dy,
(78)

at every continuity point t of F(t) and f(t).

Now let t_ be the upper _ percentage point of a normal distribution with zero

mean and unit variance. Then, the confidence interval with confidence

coefficient a for the density f(t) at every point of continuity t is given by

the expression in the parenthesis of the following equation:

fn(t)/_cocoK2 ('r)d'r <f(t)< fn(t)+t f (t K (T)d =a
-- -- -- n ---co

Z (79)
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Asymptotic N_ity of the Estimate Rn(t ) and the Class of Estimators

R*(t) f_ Estimating the Reliability Function R(t)

The empirical reliability function Rn(t ) given by (49), where

i
Rn(t) = _ [number of observations > t among T1, T2, ... Tn] ,

is bincminally distributed with

E/Rn(t)) = R(t)

1
(81)

at all time points t.

Frcm the normal approximation to the binominal distribution, it follows that

lira P [_ Rn(t ) - R(t)

n---co [ _JR(t)(1 - R(t))

< x

x

I 1 y2_ 1 -_
e dy. (82)

Hence, if t_ is the upper _ percentage point of a normal distribution with

zero mean and unit variance, then

(R (R (t)F (t))1/2n - - ( n tl/2>

Rn(t)Fn(t)

n--_lirnP n(t) - t_ n n _<R(t) _<Rn(t) + t \

z

=_.

(83)

The expression within parentheses in the above equation is the _ percentage

large-sample confidence interval for the reliability function R(t) based on

the empirical reliability function Rn(t ). Since the exact distribution of

Rn(t) is known, exact confidence intervals based on the bincminal distribution
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can also be obtained for reliability function R(t).
@

Now consider the class of estimatc_s Rn(t ) given by (_2), where

n

t j=1

R:(t) given by (84) has been shown earlier to beThe class of e stJ.m_t cr s

consistent for estimating the reliability function R(t) at every point of

continuity t of the underlying law of failures F(t).

Now (8_) can be written as

(84)

where

n

.:R (t) = n Vj ,

j=l

(85)

V. =Gj (Bn(T j - t))

and the sequence of raud_n variables VI, V2, ... is independently identically

distributed as the random variable

V(n) = G (Bn(T-t)) .

Applying Lemma i to the random variable V(n) given by (86), _ discover that

2+6
/

lira ElY(n) I < _, for 8 > o, and lira Var (V(n)) <
\ /

n-_ n--_

(86)

(87)

at every point of continuity t of the distribution F(t).
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In view of (_), the condition (72) of Le_m_ 2 is satisfied for the random

variable V(n) given by (86). Hence, the class of estimators R*(t) is

asymptotically ncm_l for estimating the reliability function R(t) at every

point of continuity t of the underlying law of failures F(t), i.e.,

t "_ 1 I x 1 y2

Rn(t) - R(t) 1 e- _

liraP _-n -- - -- < x =

n-- _Rn(t) Fn(t ) _-_r - _o

dy.

Comparing (82) and (88), we find that the _ percentage confidence interval

for R(t) is the same whether it is obtained fram Rn(t ) or Rn(t), since both

Rn(t) and Rn(t) are asymptotically equivalent for estimating R(t) at every

point of continuity t of the failure distribution F(t).

(88)

Asymptotic Normality of the Class of Estimators Zn(t ) for

Estimating the Hazard Rate z(t)

The estimator Zn(t ) for estimating the hazard rate z(t) at the point of con-

tinuity t is given by

fn(t)

Zn(t) = V'
(89)

where fn(t) and Rn(t ) are, respectively, given by (73) and (80).

FrQm (50) one finds that Rn(t) is consistent for estimating R(t), i.e.,

Pllm R (t) = R(t).
n

n -_ _
(90)
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Also _c_ (78),

1,2fn t,-f,t,)]sxlira P n 7 _ _ )1/2 _<X = e- _"n--,- co \(f(t) K2(t)dt co

dy .
(91)

Combining (90) and (91) and using the convergence theorem of Cramer [4, p.2_4],

we discover that

n_co

I/2

'n("'(" }
x 1 y2

_71 _Tr_ <x - e-_

f(t) 112 ao

\7e7 _ _'(x_x

dy. (92)

Now consider

In view of (50)

Rn(t) - R(t)) , (93)

and hence

E(Yn) = 0

Pli.m Yn O.
n-,_ (_

(94)

(95)
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Ccmbinlng (92) and (99) and again using Cramer's convergence theorem

we obtain

Iy2
1/2 Zn(t) - z(t) - _-

_< x = e dy.

KZ(x)dx
(96)

Equation (96) establishes that the class of estimators Zn(t ) are asymptotically

normal for estimating the hazard rate z(t) at every continuity point t of the

underlhing law of failures F(t).

Now, consider the class of estlmatc_s z:(t) for estimating the hazard rate

z(t), where

, f (t)
Zn(t) _ n $

a:(t)
(97)

fn(t) and R:(t) are, respectively, given by (91) and (92).

Since Rn(t) and R:(t) are asymptotically equivalent at every continuity point

t of F(t) using a similar argument as in the case of Zn(t), it is evident that

estimators z:(t) is also asymptotically normal for estimating thethe class of

hazard rate z(t) at every continuity point t of F(t).

Now let ta be the upper a percentage point of a nc_um_l distribution with zero

mean and unit variance. Then the confidence interval with confidence

coefficient _ for the hazard rate z(t) at every point of continuity t of the

underlying law of failures F(t) is given by the expression in parentheses in

the following equation:

( t_;Bn Zn(t) f- _ _z_n __ )
t n Zn(t) _ 2

lim P Zn(t)- n K ) K2(x)dx < z(t) < Zn(t)+ 1_ (t) K (x)dx
n-_ _ 2 n(t _ - /2 n

=_

(98:
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ESTIMATION AND CONFIDENCE BANDS FOR CENSORED SAMPLES

In this chapter we consider the case of censored samplinR, i.e., the situation

when N items are put to test and the test is terminated as soon as M = aN

items 0 < = < i have failed.

Let _! _ _2 _ "'" _ TM be the observed times to failure of the M items.

The empiric_l distribution function is given by

FM,N(t ) = _ in [the sample of size "N"

= _ , say..

_o_ (_)Fi(t)(iF(t))N-i

p{.-i }- . N )N-i
(i)Fi(t) (I-F( t )

i=0

(99)

(Ioo)

(N) f F(t) ]i

M

I (_)f _,(t) 1L_J
i=O

i = 0,1,2,'''M •

Let
[ F(t) ]i

(c)i=L1-F-=_TJ

l_rob
0i

{M=i} =,. N
j=Io[j)(c)j

Hence

E(M) =

_i C

i=O

ci
i=O
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Now

cl÷c)" = _ f"Ici
i_otiJ

N

i=0

= NC+2 N(N-I) C2+3 N(N-I)(N-2) 3+..N[N]C N
- 1"2 1-2 "3 C . L"J

l " (N-I)CN-2)= NC ÷CN-I)C + 1"2
,fN-:l.1 _z_-2 rN-Z'I N-Z]

c [.-2]c +[N-z_c ]

= Nc (l+c) N-1

ECM) =

g

i ci- I i ci
i=O i=M+l

ci- I ci
i=O i=M+l

N N N_o_[_Ic_ z_[:]c_
i=M+l

I c_ I _j
i=O i=O

N Ni_i=_l[ilci
_[:)ci

i=O
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"I÷---6-_ i
i=M+l

N Ni.i.L{i)cl
,!of:}°i

E _ F...(t)]= c___l÷C

N

i=M+l

I_- _ CI
" ImM+l

Consider now

U

(l+C) N

l

i+ F(t)]

N

i,=M+l
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SupposeM = ON where 0 < e < i.

i=yN

vhere ¥N = 8N+I

Hence

_-- i-_+i[lY

i=O U-Y

Then the above

=0 .

Tow N

2
i=M+l i=M+l

Hence

i=M+ i i=_+ i [i

N _ -- N N

Hence llm _ i Ci
N-_ i=M+l

= 0 •

Thus

iim E(SFM,N(t)) = F(t). (ioi)

We will now prove that 8FM,N(t) is consistent for estimating F(t) for any t.

view of (lOl), since 8FM,N(t) is asymptotie__lly unbiased for estimating F(t),

m_ is sufficient to show that the variance of eFM,N(t) goes to zero as the

sample size N_.

In
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Now

M FM,N(t) )War (eFM,N(t))--War (_

I Z(=2___/)
- _ Vat (4)- .2 E/_!]2 (102)

In a straightforward manner, as in the case of E(SFM,N(t)),_ it can be shown

easily that

and

llm E(m 2) = F2(t )
N _-_ N ' (103)

llm E(m 2 )
= F2(t ) .

N"*_ N 2

combining (102), (103) and (104) we discover that

llm Var (eFM,)#(t)) = 0 .

(104)

(105)

Equations (i01) and (105) together establish the consistency of eFM,N(t ) for

estimating the underlying law of failures F(t).

In order to obtain consistent estimates for the density f(t) of the under-

lying law of failures and the hazard function Z(t) = f(t)/R(t), we proceed

as follows:

Let KCx) be the usual weight-function or window as defined in Chapter

II above, _nd let [BN} be aR.sequence of nonnegative constants depending on

the sample size N such that _--_,'+ 0 as N_-_
LI

Consider

F*M,N(_ )

where from (99)

FM,N(t)

= /oBNK(BN(t-_)) FM,N(t) dt , (106)

= 1 {Min [ Number of observations < t
M among TI, T2,... T N

M
i

= _- _ U(t-lj) ,
J=1

,M]} (107)



and U(x) = i Zor x ,_0

= 0 otherwise, T < _ • ...
I -- 2--

failure of the M items.

< XM
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are the observed times to

Combining (106) and (107) we obtain

F*M,N(t)

S

!
M _=_IBN _ K(BN(t-_)) _t-xj) dt

(108)

BN M -

- %- _ ; zCB.Ct-_))at.
J=l _j

Let

t

I- I zCx)_- ;
o t

K(x)dx = G(t) . (109)

Making the substitution BN(t-z) = x in (108) we obtain

N

r,M,N(,)-_ !_ _ ; Z(x)dx
j=z BH{_j-_ )

(no)

N
1

}[ GCBNC_j-_))
•J=l

In the form (ii0) the statistic F*M,N(Z) is straightforward and easy to calculate.

_ne consistency of F*M,N(I) for estimating F(I) can be established and the

details of the calculation will not be given here.

To obtain the estimate for the density f(_) we differentiate both sides of

(ii0) with respect to T and obtain

N

! [ BNK(BN(Tj__) ) • (111)
fmM,N (T) : N J=l
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From the consistency of F* (z) for estimating F(_), the consistency of
M,N

f*M,N(T) ithe_ derivative of F*M,N(T) for estimating f(T) the derivative

of F(T)! follows.

To estimate the hazard function Z(T) at time T, we propose

f*M,N (T)

Z*M,N(T) " i - FM,N(T)
(112)

The asymptotic variance and the consistency of Z* (T) can be obtained
M,N

by simple but tedious calculations. Also the asymptotic normality and

the associated confidence bands for all the estimates considered can be

established by methods similar to those in Chapter II.
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C_ IV

ESTIMATION AND CONFIDENCE BANDS FaR THE TRUNCATED SA_ING SCHEME

This section addresses the situation where the life testing scheme is truncated.

Let N identical items be put to a life testing experiment and let the experi-

ment be terminated after time m.

Let TI, T2_ ..., TM denote the observed times to failure obtained in the

above experiment. Here each Ti, i = i, 2, ..., M is a random variable and

each is less than or equal to m. Also, the sample size M itself is a random

variable, as _ do not know before the experiment is perfc_med how many of

the sample items fall by the fixed test period _.

Let

P[ i t] = F(t),i = l, 2, ...,M.

F(t) is the underlying distribution function of time to failure T or, equiva-

lently, the so-called underlying law of failures.

Our object now is to estimate the underlying law of failures, the reliability

function, and the hazard rate, based on the above truncated sampling scheme,

without assuming anything about the farm of the underlying law of failures,

e.g., Weibull, lognormal, gamma, etc.
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The Empirical 'Distributiqn far the Truncated Scheme

Let

i [Number of observations among]
FM(t) =M [ TI, T2, ..., TM g t

(113)

fc_t _m;

= i, otherwise,

since all TI, T2, ..., TM are less than ar equal to m.

From (113) it is easy to see that we cannot estimate the underlying law of

failures F(t) or, equivalently, the reliability function R(t) f_ values

of time exceeding the test period T.

We will now write down the empirical reliability function as follows:

RM(t) - i - FM(t) , where (ll4)

_M(t)is givenby (113).
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Let

U(x) =iforx _0

= 0 otherwise.

(zz_)

In terms of (115), (113) can be written as

M

F_(t)-_
J=Z

(iz6)

fort g_,

= i, otherwise.

Sampling Properties of FM(t) for the Truncated Case
,. . ,| ,,

Clearly, the sample size M is a binomlally distributed random variable with

parameters N and probability p given by

p = P(T g 7) = F(_) . (117)
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Hence_

(118)

E(M) = Np = _(_'), (119)

v=(M) - _p(l - p) = _(,)R(_) . (12o)

Now for any fixed M (say, M = m) we have, from (116),

(ira.)

Since all Tj _ 7, we have for the distribution function of Tj

P(Tj _t) -_, 0 _t _7. (122)

using (121) _ (_2) we ob_

E(Fm(t)) = E U(t- Tj)
(123)
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t

0

Since (123) is independent of m, we have fram (113)

(124)

FM(t) is thus not an unbiased estimate of the underlying failure distribution

F(t).

Equation (124) thus suggests the following exactly unbiased estimate which

unfca-tunately involves F(_):

F(_)FM(t)" _M

M

j=l

fc_t gin, (_)

= 1 otherwise .
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Nowsince F(m) is a binomial probability, the best estimate for F(m) is given

by _N. Substituting far F(m) its best estimate M/N in (129), we obtain

M

FM(t) =S U(t - Tj) , t g _ . (126)
J=l

In (129) and (126) we assumed that the binomial randam variable M _ i. Fram

(]_18) we obtain that the conditional distribution of M, given M _ l, is

P{M = _M _ 1] = m pm(1-p)N-m (127)

l.(l.p)_

m = l, 2, 3, ..., N .

Hence

m=l l- (l-p) N

(z28)

Thus

_C,')

_.(_'M ;_ l) = i_,_)--(I-;',-''''_
(129)
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Now the expected value of (126) far fixed M, say M = m, is given by

E (t) -_
(13o)

Now taking expectation with respect to m in (130) we discover, in view of

(129), that

N(I'(I"F(T)N)

(131)

Taking limit as N _ = in (131), wm discover that

lim E t = F(t) , t g _.
N-4_

(132)

Equation (132) establishes that FM(t) given by (126) is asymptotically unbiased

for estimating F(t) for t gm.

In order to show that FM(t) is consistent for estimating F(t) for t g m, we

will first compute the variance of FM(t) and then show that it goes to zero

as the sample size N _ _ .
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We have

v_ (t) =E__
Vat <U(t- Tj))

(133)

_[I-(I-F(_))_]

Thus

lira N Vat F.(t) - F(t) i -
N-_

t g T . (13_)

It follows from (13A) that

llm Var(FM(t)) = 0 0
N-_@o

(135)

A

Ccmbining (132) and (139), we discover that FM(t ) given by (126) is consistent

for estimating F(t), t g _.
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Following exactly the same procedure as in Chapter II, we also discover

that the sequence of statistics given by

A

FM(t) - F(t)
112

(136)

converges in distribution to a ncmmml distribution with zero mean and unit

variance as the sample size N _ _, fur t _ _.

It now follows from (114) and (136) that the sequence of statistics

R (t) -

converges in distribution to a nc_ distribution with zero mean and unit

variance as the sample size N _ _, where the empirical reliability statistic

is given by

t) = i - t) , fc_ t _ m .



The estimation procedure for estimating the hazard rate z(t) = f(t)/R(t) in

this case is very similar to the simple random sampling situation given in

Chapter II. Also, the asymptotic normality follows in a similar manner.

Thus confidence bands at any desired level ef confidence for the reliability

function and the hazard rate follow from the above results and remarks.
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CHA_T_ V

THE MEANING OF JUMPS OF F(t); ESTIFATIONp AND TESTS OF HYPOTHESES

I_ter_,retation of a Discontinuit_ and Jum_ in the

Under_ Law of Failures

distribution function F(t) of time to failure T is absolutely continuous,If the

then the pure step function F2(t) is identically zero for all t and

t

F(t) = Fl(t)= f f(v)dv , (137)

o

where f(t), the derivative of the absolutely continuous part, is the probability

density function. In this case,

P(T-- t ) = 0 , (138)
O

where to is any specified time instant. In other words, the probability of the

event that the item fails at time to is identically zero. On the other hand,

if the distribution function F(t) is not absolutely continuous and if the time

instant t corresponds to a point of discontinuity in the distribution F(t),
O

we have

P(T = tv) = S , v = 0,I,2, . oo , (139)p
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where S is the magnitude of the Jump of F2(t ) or F(t) at t = t . The mean-D D

ing of (139) is that there is a strictly positive probability, equal to the size

of the jump, that the item fails at time instants corresponding to the points

of discontinuity in the underlying law of failures. This may happen if the

item is subjected to instantaneous hostile atmosphere at these time points.

A vehicular system traversing through space and being impinged upon by failure-

causing meteorites provides an example of such a situation.

Estimation of the Jump Si at the Discontinuity ti

of the Underl_in_ Law of Failures F(t)

Assuming the singular part to be identically zero, the distribution F(t)

can be decomposed into (see Cramer [4, pp. 92, 93]):

F(t) --Fl(t ) + F2(t ) , (14o)

where Fl(t ) is an everywhere continuous function, and F2(t ) is a pure step

function with steps of magnitude, say, Su at the points t = tu, u - l, 2, ...;

Fl(t ) and F2(t ) are nondecreasing and uniquely determined. Substituting (140)

in equation (_7), Chapter II, we obtain

= II + I2 , say. (141)
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Using arguments similar to those following equation (_7) (Chapter II),

we readily obtain

lim I1 = Fl(OO) - Fl(t) .

Since Fl(t) is continuous at t = ti,

lira I1 : FI(_) - Fl(t i)

n.-_ oo

(142)

at the discontinuity t = ti of the underlying law of failures F(t).

Now

Denoting

by

cD co

xz= fG(Bn(_-t')dFzC_) = E SvG(Bn(tv-t))
O v=l

(143)

l Stmm_tion over all u such that tu>t i and by summation

over all u such that tu<ti, at the discontinuity t = ti of the distribution

F(t), 12 can be written as

whe re

12 = 121 + 122 + 123 ,

121 = l

t<t.
v i

S O(Bn'tvtil),

and

Now

122 = SiG(O ) = i/2 S i ,

123 = I

t >t
V 1

SvG(B n(tp-t i)) •
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whe re

and

t < ti,

I 1_.m

tv<ti,

I l>m
SvO(Bn/tv-ti')•

It can be argued, as in the proof of Lenm_ i (Chapter II) that _2 can be made

arbitrarily small by choosing m sufficiently large (no matter what n is); and

Zl, far fixed m, can be made arbitrarily small by choosing n sufficiently

large, i.e.,
lim I_ = 0
n---_ £ 1

_om

I23
tv>t i tv>t i

it is discovered that

lira I23 = I S v •
n--.- co t >t.

Y 1

Of course, it should be noted that in proving the above statement it is

assumed that

<00 o

This proves that, at

failures F(t)

the discontinuity t = ti of the underlying law of

lirn I z = 1/Z S i + _. S v •
>t.n--_m t v (144)
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CcmblniD_ equatlons (l_l)_ (142), and (l_) we obtain

Iim E R (ti) : Fl(_ ) - Fl(ti) + i/2 Si v
n--_ tv>ti

at the discontinuity ti of the underlying law of failures F(t).

Now

F(ti) =

t i

f d(Fl(t)+ F2(t)) = Fl(ti) + _ Sv ,
<t.

0 tv 1

and therefore

R(ti) = 1 - F(ti) = FI(_ ) + F2(m ) - Fl(ti) - /__

tv-<t i

= F l(m) - F l(ti) + Z Sv •

tv>t i

S V

Substituting equation (146) in equation (149) we discover that

( * )lim E Rn(ti) = R(ti) + I/2 S i.
n-,-c0

(145)

(146)

(147)

From equation (90) of Chapter II we have that

Write

E(Rn(ti) ) = R(ti) .

Hn(ti) = 2 [Rn(t i) - Rn(ti)].

In view of equations (1157) and (148), we obtain

lim E(Hn(ti) ) = S i
n--,_

at the discontinuity t of the underlying law of failures F(t) .
i

(148)

(149)

(150)
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To obtain the variance of the statistic Hn(ti) , we have

Var(Hn(ti)) = 4[ Var (R:(ti))+ Var (Rn(ti))

-2 Coy IR:(ti), Rn(t i)l]

Since we know Var (Rn(ti))as given by equatio_ (90) of Chapter If, we only

(151)

From equation (61) (Chapter If) we have

Now

" ))n Vat (Rn(t = E

=/o2( n,Ttl)dFl ,
o

+ } GZ(Bn(T-t)> dFZ(T),

O

= Jl + J2' say.

It is easily seen that

lira JZ
n-_¢o

at the discontinuity t i of F(t).

= Fl(_O) - Fl(t i) ,

= i/4 Si + I Sv,

tv>t i

(152)

(153)

Therefore,

n-_¢l)

= Fl(_ ) - Fl(ti) + 1/4 S i + Sv

tv>ti

= R(ti) + 1/4 Si . (154)
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Combining equations (147), (152), and (154) we obtain

[ ('n)]lirn n Var R (ti)
n-_co

( )2= R(t i) + I/4 Si - R(ti) + i/2 Si , (155)

To find the covariance between Rn(t ) and R:(t), let us recall that

n

R:(t) = 1/n _=1 G(B n(T -t)) (156)

and

Rn(t ) = 1/n[number of observations >t]|among T1, T2 .... Tn
L n

= 1/n _U(TS'-t),
5'=1

(157)

where

U(x) = 1 for x > 0

= Oforx<O

Now

We have

= I/n

n

5'=1

(158)

(159)
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where

M 1

co

= Mll +M12, say, (z6o)

and

(161)

It can be easily verified that

CO

n --_co o

= F1 (co)- FI (ti)' (162)

at the discontinuity t

Also,

Hence,

= t. of F(t).
1

MIZ

CO

_,.,(.,--tlO<'_n(T-t_)dF2("_
O

7 svo(,_o(tv-til)
tv>t.

i

lim MIZ = /_,, S v,
n--co tv>t i

(163)

at the discontinuity t = t i.
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Summing up,

lim M 1 =
rl-,.c0

at the discontinuity t i of F(t).

We have

E (U (T-ti))

FI(_ ) - Fl(ti) + /__ Sv : R(ti)

tv>t i

(D

fu (T_ti,d I(T)+
0

X
fd Fl(-r ) +

t i tv>t i

FI(_ ) - Fl(ti) +

S V

Y, sv
tv>t i

= R(ti).

(z64)

(165)

Combining eq_tions (ikT), (161), and. (]-69), we have

lirn M 2 = R(ti)(R(ti) + 1/Z Si),
n-_co

(166)

at the 4iscontinuity ti.

Finally, combining equatioas (198), (164), and (166) _ discover that

lira Cov IG(Bn(T-t)), U(T-t) 1 = R(ti)[ I _ R(ti) i/2 Si I'
rl-,.co

(167)
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at the discontinuity ti.

Combining all the above, we obtain

lim In Var ( Hn{ti))]
n-,-oD

= si(1-s i) (168)

at the discontinuity t = ti of the distribution F(t).

Writing the estimator _(ti) as

where

n

Hn(ti) = l/n _ _(,
y= 1

cy = zIG(B (Ty-_,) - u(ry-t_}l, (169)

one can easily verify that the sufficient cor_ition equation (72) of Chapter II

is satisfledby the sequence {{V] of independently a_ identically distributed

random variables. Thus we have proved

Theorem 3

The class of estimators {Hn(tl)] are consistent and asymptotically normal

for estimating the Jump Si correspondlngto the discontinuity t = ti of the
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underlying law of failures F(t).

Consider now the estlmatar

f (ti) = I/B nfn(ti)n
(17o)

and fn(ti) is given by equation (29) of Chapter II at the discontinuity ti

orF(t).

Since

n

fn(ti) = i/n II Bn(T V -t) ,
¥=1

(171)

a straightfarward calculation yields that

lirn E f (ti = K(0) Si,

(172)

at the discontinuity t = ti of the underlying law of failures F(t); and finally,

the estimate fn(ti) is asymptotically nc_mml. Thus, the classes of estimators

Jump Si at the discontinuity ti of F(t).
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Testin_ the Hypothesis that the Underlying

Law of Failures Has no Jmnp
i

Let T1, T2, .. Tn be the observed times %o failures of n identical items put

to life testing experiment. Let K(t) be the usual weight functiun or window

as defined by equatio_ (24) uf Chapter II. Let Bn be a sequence of nonne_tive

eaastants tending to infinity as n _ _ .

Consider the statistic

S
n

n

IS K<BnCTi
= (_ i_j

It can be easily shown that

CO

Z

InirncoE(Sn) = K(O) S Sv

v=1

Sn

i.e., the estimator _ is asymptotically unbiased for estimating the sum

of squares of Jumps in the underlying law of failures.

In a similar manner, it can be shown that

nlirn In Var (Sn) ] = KZ(O) S(I - S)
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where

oO

S = _/__ $2v "

v=l

It can also be shown that the sequence of estimates

normal for estin_ting S.

S
n

K--OVis asymptotically

Thus we have

The sequence of estimators

S
n

K-O? is consistent and asymptotically normal

for estimating the sum of squares of Jumps S in the underlying law of failures.

The abo_e theorem at oace yields a large sample test of significance for

testing the hypothesis that

S

00

I S2 =0,

_=i u

i.e., whether the underlying law of failures F(t) has Jumps, or not.
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CHAPTER VI

/

ESTIMATION OF THE FAILURE LAW BY RENYI-TYPE STATISTICS

In this chapter appear tables of the exact distribution of some R_nyl-type

statistics. Expressions for the exact and limiting distributions are given.

Also discussed in this chapter are the accuracy of the tables and their use

for obtaining upper confidence conditions for the unknown distribution function

of failures. We also discuss the size of the sample necessary to use the

limiting distribution in place of the exact distribution.

Let T < ... < T be an ordered sample from a random variable T (time to
m -- n

failure) with continuous distribution function, F. Let F be the empirical
n

distribution function of this sample.

If little is known about the distribution function, F, then one seeks an

upper confidence contour for F, i.e., a function G (s), depending on the
n

sample, such that the assertion F(s) _ Gn(S) can be made on a preassigned

confidence level, for every s > 0 or at least within some meaningful range.

The two statistics that will be considered are

and

D 1 - sup {Fn(t) - F(t)}

Fn (t)__a

F (t)-F(t)
n

D 2 = sup F (t)

Fn(t)__a n

The exact distribution of each of these statistics is known from [3]

and the limiting distributions were developed in [7] and [i0].
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The exact distributions of the statistics, DI and D2, are given by

and by

Pl(n,a,c) - P[ sup {F (t)-F(t)} <c] =

Fn (t) >_a n

k

- l-c J_O (_) ( n_+ c) J-l(1-c-J/n)ln-J

where k = fin(l-a) ] -I) +

F (t)-F(t)
n

P2(n,a,c) = P[ sup F (t) <c]
F (t)>a 1.1

I"1

ffi 1-C

Jffi0

n-J

wherek

I_ if d>0
The notation (d) + is defined by (d) + - -- .

if d<0

The limiting distributions of the statistics are given by

(173)

(174)

llm P[/n sup {Fn(t)-F(t)} <c]

n-_ Fn (t) >__a

iCl e-2C 2 Ic3
ffi _ e-t2/2dt -t2/2dt

e

(175)
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and by

c c-2ac
" and c 3 =

where c 1 /aa (l-a) '_(1-a)

F (t)-F(t) c]lim P _n sup n

n_ Fn (t)> a Fn (t) <

c (a/l-a) 112

. ____...f e-t2/2 dt.

0

(176)

The following is a brief description of the computations leading to the

tables. The computations for both tables were done by an IBM 360 computer

system using the expressions (173) and (174) for the respective statistics.

The programs were written in FORTRAN IV language in double precision.

Computations of the exact distributions of both statistics were done for the

followlng values of n,a, and c:

nffi5(5)50, a=.10(.10).80, and cffi.05(.05).90.

Due to double precision, the probabilities are accurate to five decimal

places. Since the limiting distributions are much easier to calculate than

the exact distributions, it clearly is useful for practical reasons to know

at what level of sample size the exact and limiting distributions differ

by less than, say, .001. Additional computations using expressions (175)

and (176) have indicated that this is the case for n greater than 40 for

the statistic DI and for n greater than 50 for the statistic D2.
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If the sample TI''''Tn is censored from above to m observations (m<n),

then F is known only for those values of t for which F (t) < _ .
n w n

While the two statistics, DI and D2, correspond to censoring from below,

the following simple replacement in the statistics leads to the case of

censoring from above: In both statistics let F(t) be replaced by

l-F(-t), Fn(t) by l-Fn(-t) , and -t by t. Then one has:

-,[.u.
Fn (t )<l-a

{F(t)-Fn (t)} _<c ] (177)

F(t)-F (t)

P[D2_c ] = P[ sup n ]
Fn (t)_<l_a l-Fn (t) <__c .

(178)

Simplifying both (177) and (178) leads to

and

.[o,.] (t) + c

= _F(t)<Fn(t) + c

for Fn(t)_<l-a ] ffi (179)

for t<__Tk, k-([n(l-a)]-l)+ 1

= P (t)<Fn(t)(l-c) + c for t_<Tk, k- n(l-a

\

Let D denote either of the statistics, D1 or D2. In practical situations one

is given a sample size n, a censoring level a, 0<a<l, and a confidence level

l-a; and for both statistics one seeks the minimum c, denoted c in the
ct'

range of c given above, so that
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D_<c ] • l-a .P a _ (181)

For each statistic this will give an upper confidence contour at the

l-a level.

For each statistic, for each n and a in the range given above, and for

a=.10, .05, .02, and .01, the value of ca in the range .05(.05).90 appears

in the tables along with P[D<_ca] and P[D<_ca -.05 ].

Thus, for a given n,a, and a one obtains from Tables I and II the critical

values, ca, I and ca, 2 so that the following inequalities hold:

and

P[D.<c[i__a,l ]= P[F(t)<F n(t) + ca, I
for (182)

c for (183)
a,2

For example, for n=10, a=.20, a=.05 for the statistic D I one finds in Table I

the value c =.40. The corresponding probability, obtained from Table Ia

is PI(10, .20, .40) = .970505. Also, from the same row, one has PI(I0,.20,.35) ffi

= .933015. The confidence contour obtained is given by

t_F(t)<--Flo(t) + .40 for t<_T7 ] ffi•970505 > .9500 = l-a]
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For the statistic D 2 one obtains from Table II for n=lO, a=.20, and

_=.05 the critical value ¢ =.75 and the corresponding probabilities

P2(I0,.20_.75 ) = .962044, P2(I0,.20,.?0) = .938123.

This yields an upper confidence contour given by

p[F(t)<Flo(t)(.25) + .75 for x<..T7 I= .962044 > "9500 = l-a "



at.10, n=5

c_.lO, n=lO

c_.10, n=15

a=.lO, n=20

TABLE I

c
ct Pl(n,a,c ) Pl(n,a,c -.05)

.I0

.20

•30
.40

.50

.60

.70

.80

.45

.45

.45

.45

.45

.45

.40

.40

•902998
.902998
•902998
.902998

.915907

.9_5907
.922224
•922224

•845440

.845440

.845440

•845440

•871040

•871040

.883971
•883971

•i0
.20

•30

.40

.50

•60

.70

.80

.35

.35

.35

.35

.35

.35

.30

.30

.933013

.933013

.933013

.933369
.936865
.944435
.915152

.941519

.864536

.864536

.864536

.868256

.878165

.893918
•849516
.891907

.10

.20

•30

.40

.50

.60

.70

•80

•30

•30

.30

.30

•30

.25

.25

.25

•946009

•946009

•946036

•946682

•952051

•902533

.932071

•949720

.870227

.870227

.871628

.875512

.891090

.806772

.858129

.889823

•i0

.20

•30

.40

.50

.60

•70

•80

.25

.25

.25

.25

.25

.25

.20

.20

.931173
.931173
.931250
.933149
.938765
.948270
.900856
.934560

.822814

.822814

•825257

.834565

•850587

•872754

.782405

•842035

73



a'. i0, n--25

a=•lO, n=30

a=•lO, n--35

_=•i0, n=40

a=. i0, n=45

TABLE I _Continued)

a c
rl Pl(n,a,co_ ) Pl(n,a,c -•05)

•i0

•20

•30

•40

•50

•60

•70

•80

•25
.25
•25
•25
•20
.20
.20
.20

.963496

•963496

.963546

•964240

•902474

.915859

•941222

.960763

•881683
•881683
.883444
.888442
•765900
•793050
•843814

•885483

•i0

.20

•30

.40

.50

.60

.70

•80

.20

.20

.20

.20

.20

.20

.20

.15

•920985

•920985

•921449

•924870

•943524

•944213

•959268

•916464

•764733
.765179
.771860

.786787

.808842

.837623

.873403

•761349

•I0

.20

•30

.40

.50

.60

.70

•80

.20

.20

.20

.20

•20

.20

.15

•15

•947231

•947231

.947567

.949477

.955642

.962942

•907688

.938773

.812358

.812569

•818474

•829111

•850795

•872285

•734762

•797235

• 10
•20
• 30
•40
.50
•60
.70
• 80

.20

.20

.20

.20

.20

.20

•15

•15

.964758

.964758

.964849

.966056

.969509
.975350
.925244
.954956

.850342

.850441

.853648

.863043

.878461

.899362

•759626

.827198

•i0

.20

•30

.40

.50

.60

.70

•80

.20

.20

.20

.20

.15

.15

.15

.15

.976463

.976463
.976529
.977214
.904711
.920582
.944967
•966760

.880635
.880682
.883434
.890252
.702222
.738592
.795265
.852366

74
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a ca Pl(n,a,Ca) Pl(n,a,Ca-.05)

a=.05, n=5

a.,.05, n=lO

a=. 05, n-15

a=.05, n=20

a=.05, n-25

.i0 .55 .970152 .944000

.20 .55 .970152 .944000

.30 .55 .970152 .944000

.40 .55 .970152 .944000

.50 .55 .970805 .948500

.60 .55 .970805 .948500

.70 .50 .968750 .949671

.80 .50 .968750 .949671

.i0 .40 .970505 .933013

.20 .40 .970505 .933013

.30 .40 .970505 .933013

.40 .40 .970505 .933013

.50 .40 .971167 .936865

.60 .40 .973919 .944435

.70 .35 .955852 .915152

.80 .35 .970418 .941519

.i0 .35 .981021 .946009

.20 .35 .981021 .946009

.30 .35 .981020 .946036

.40 .35 .981040 .946682

.50 .30 .952051 .891090

.60 .30 .957019 .902533

.70 .30 .970924 .932071

.80 .30 .979255 .949720

.10 .30 .978466 .931173

.20 .30 .978466 .931173

.30 .30 .978466 .931251

.40 .30 .978595 .933149

.50 .30 .979740 .938765

.60 .30 .982595 .948270

.70 .25 .961147 .900856

.80 .25 .976280 .934560

.i0 .25 .963496 .881683

.20 .25 .963496 .881683

.30 .25 .963546 .883444

.40 .25 .964240 .888442

•50 .25 .967970 .902474

•60 .25 .972484 .915859

•70 .25 .981731 .941222

.80 .20 .960763 .885483
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76

a Ca PI (n,a, ca) P1 (n,a, ca-. 05)

ct,-.05, n=30

a=.05, nffi35

a-. 05, nffi40

a=.05, n=45

.10 .25 .980638 .920985

.20 .25 .980638 .920985

.30 .25 .980638 .920985

.40 .25 .980920 .924880

.50 .25 .982342 .932524

.60 .25 .985348 .944213

.70 .20 .959268 .873403

.80 .20 .976313 .916464

.10 .25 .989730 .947231

.20 .25 .989730 .947231

.30 .25 .989732 .947567

• 40 .25 .989838 .949477

• 50 .20 .955642 .850795

• 60 .20 .962942 .872285

.70 .20 .975411 .907688

.80 .20 .985626 .938773

•i0 .20 .964758 .850342

.20 .20 .964758 .850342

.30 .20 .974849 .853648

.40 .20 .966056 .863043

.50 .20 .969509 .878461

.60 .20 .975350 .899362

.70 .20 .983014 .925244

.80 .15 .954956 .827198

.i0 .20 .976463 .880635

.20 .20 .976463 .880682

.30 .20 .976529 .883434

.40 .20 .977214 .890252

.50 .20 .979876 .904712

.60 .20 .983587 .920582

.70 .20 .989634 .944967

.80 .15 .966760 .852366



TABLE I (Continued_
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a ca Pl(n,a,Ca) Pl(n,a,c a -.05)

a=.02, n=5

a=.02) n=lO

a-.02, n=15

aft,.02,n=20

affi.02,n=25

.10 .60 .984960 .970152

.20 .60 .984960 .970152

.30 .60 .984960 .970152

.40 .60 .984960 .970152

.50 .60 .984960 .970805

.60 .60 .984960 .970805

.70 .55 .981547 .968750

.80 .55 .981547 .968750

.10 .45 .988554 .970505

.20 .45 .988554 .970505

.30 .45 .988554 .970505

.40 .45 .988554 .970505

.50 .45 .988554 .971167

.60 .45 .989244 .973919

.70 .45 .991098 .979063

.80 .40 .986141 .970418

.10 .35 .981021 .946009

.20 .35 .981021 .946009

.30 .35 .981021 .946036

.40 .35 .981034 .946682

.50 .35 .982170 .952051

.60 .35 .983756 .957019

.70 .35 .989022 .970924

.80 .35 .992344 .979255

.10 .35 .994622 .978466

.20 .35 .994622 .978466

.30 .35 .994622 .978466

.40 .35 .994623 .978595

.50 .35 .994730 .979740

.60 .30 .982595 .948270

.70 .30 .987096 .961147

.80 .30 .992543 .976279

.10 .30 .991411 .963496

•20 .30 .991411 .963496

.30 .30 .991411 .963546

.40 .30 .991436 .964240

.50 .30 .991966 .967970

.60 .30 .992958 .972485

.70 .25 .981731 .941222

.80 .25 .988701 .960763
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a ca Pl(n,a,Ca) Pl(n,a,Ca-.05)

a-.02, n=30

a=.02, n=35

affi.02, n-40

a-.02, n=45

• 10 .25 .980638 .920985
.20 .25 .980638 .920985
• 30 .25 .980640 .921449
• 40 .25 .980920 .924880
.50 .25 .982342 .932524

• 60 .25 .985348 .944213
.70 .25 .989701 .959268
• 80 .25 .994580 .976313

.10 .25 .989730 .947231

.20 .25 .989730 .947231
• 30 .25 .989732 .947567
.40 .25 .989838 .949477
.50 .25 .990714 .955642
.60 .25 .992192 .962942
• 70 .25 .995063 .975411

.80 .20 .985626 .938773

.10 .25 .994552 .964758

.20 .25 .994552 .964758

.30 .25 .994552 .964849

.40 .25 .994594 .966056

.50 .25 .994937 .969509

.60 .25 .995838 .975350

.70 .20 .983014 .925244

.80 .20 .991241 .954956

.10 .25 .997110 .976463

.20 .25 .997110 .976463

.30 .25 .997110 .976529
.40 .25 .997126 .977214
.50 .25 ,997330 .979876
.60 .20 .983587 .920582

• 70 .20 .989634 .944967
• 80 .20 .994646 .966760
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TABLE I (ContJ.nued_ 8O

a c a Pl(n,a,Ca) Pl(n,a,ca-. 05)

affi. 01, n=30

a=. 01, n=35

==. 01, n=40

a=.Ol, n=45

• 10 .30 .996574 .980638
.20 .30 .996574 .980638
• 30 .30 .996574 .980640
.40 .30 .996579 .980920
.50 .30 .996697 .982342

.60 .30 .997154 .985348
.70 .30 .998001 .989701

.80 .25 .994580 .976313

.10 .30 .998633 .989730

.20 .30 .998633 .989730

.30 .30 .998633 .989732

.40 .30 .998634 .989838

.50 .25 .990714 .955642
.60 .25 .992192 .962942
.70 .25 .995063 .975411
.80 .25 .997387 .985626

.10 .25 .994552 .964758
.20 .25 .994552 .964758
.30 .25 .994552 .964849
.40 .25 .994594 .966056
.50 .25 .994937 .969509
.60 .25 .995838 .975350
.70 .25 .997235 .983014
.80 .20 .991241 .954956

.10 .25 .997110 .976463
.20 .25 .997110 .976463
.30 .25 .997110 .976529
.40 .25 .997126 .977214
.50 .25 .997330 .979876
.60 .25 .997781 .983587
• 70 .25 .998659 .989634
• 80 .20 .994646 .966760



TABLE II

a c P2(n,a,c ) P2(n,a,c-.05)o& Ot ot

(xffi. 10, n=5

_ffi.I0, n=lO

_ffi.lO, n=15

S=.lO, n=20

sffi.lO, nffi25

.I0 .75 .910758 .874423

.20 .75 .910758 .874423

.30 .65 .927216 .895265

.40 .65 .927216 .895265

.50 .50 .904750 .865339

.60 .50 .904750 .865339

.70 .40 .922240 .883971

.80 .40 .922240 .883971

.i0 .75 .903122 .864586

.20 .65 .907319 .869529

.30 .60 .927309 .892857

.40 .50 .904894 .861918

.50 .45 .911194 .866802

•60 .40 .914735 .867673

.70 .35 .918037 .867401

.80 .30 .924851 .870963

•i0 .65 .901136 .861726

.20 .60 .917586 .880166

.30 .50 .923233 .883215

.40 .45 .918203 .873833

•50 .40 .936651 .894112

•60 .30 .924993 .873326

•70 .30 .939817 .887618

.80 .25 .927235 .859496

•i0 .70 .931302 .898124

•20 .55 .916571 .876754

•30 .45 .903903 .855207

•40 .40 .915308 .864764

.50 .35 .918447 .862796

.60 .30 .916341 .851632

.70 .25 .910792 .831626

.80 .20 .904768 .803238

.i0 .60 .910059 .870518

.20 .50 .907360 .862590

•30 .40 .902838 .848362

•40 .40 .942353 .899795

•50 .30 .909015 .840222

•60 .30 .943948 .889383

.70 .25 .948012 .885179

•80 .20 .934598 .845578

81



TABLE II (Continued)
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a ca P2(n,a,Ca) P2(n,a,Ca-.05)

a-.10, n-30

a-. I0, n- 35

a-.lO, n-40

a-.lO, n=45

a-.lO, n=50

.10 .60 .908212 .868174

.20 .50 .929810 .890122

.30 .40 .916158 .864584

.40 .35 .925087 .869812

.50 .30 .924601 .860314

.60 .25 .916786 .835993

.70 .20 .901457 .791727

.80 .20 .954656 .877856

.10 .55 .907848 .865579

.20 .45 .911647 .863566

.30 .40 .942496 .899052

.40 .35 .943617 .894928

.50 .30 .948847 .894838

.60 .25 .936977 .864543

.70 .20 .931165 .834699

•80 .15 .902808 .748228

.10 .55 .906418 .863767

.20 .45 .928641 .884791

.30 .35 .909502 .848473

.40 .30 .914798 .845559

.50 .25 .907631 .821147

.60 .25 .952016 .887615

.70 .20 .940771 .848939

.80 .15 .922296 .776908

.10 .55 .933717 .897158

.20 .40 .902394 .846514

.30 .35 .931718 .877530
• 40 .30 .930646 .866920
.50 .25 .929615 .851692
.60 .20 .906416 .794210
• 70 .20 .958029 .878686
• 80 .15 .937637 .801746

.10 .55 .932785 .895906

.20 .40 .917080 .864728

.30 .35 .938614 .886819

.40 .30 .943368 .885009

.50 .25 .937969 .863701

.60 .20 .921834 .816069

.70 .20 .963801 .888918

.80 .15 .949790 .823390



TABLE II (Continuad)
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a ca P2(n,a,ca) P2(n ,a,ca-.05)

a=.05, n=5

affi.05,nffilO

a=. 05, n=15

a=. 05, nffi20

a=.05, n=25

.i0 .80 .952246 .910758

.20 .80 .952246 .910758

.30 .70 .952482 .927216

.40 .70 .952482 .927216

.50 .60 .958303 .935358

.60 .60 .958303 .935358

.70 .50 .968750 .949672

.80 .50 .968750 .949672

.10 .80 .973956 .945877

.20 .75 .962044 .938123

.30 .65 .953728 .927309
• 40 .60 .961843 .937808
• 50 .55 .966641 .943828
• 60 .50 .970083 .947800
• 70 .40 .951960 .918037
.80 .35 .958452 .924851

.10 .75 .958954 .933549

.20 .70 .968381 .946795

.30 .55 .952572 .923233

.40 .50 .950103 .918203

•50 .45 .964616 .936651

.60 .40 .958483 .924993

.70 .35 .970060 .939817

.80 .30 .964953 .927235

.i0 .75 .957422 .931302

.20 .65 .968828 .946945

•30 .55 .965060 .939926

•40 .45 .950392 .915308

.50 .40 .954930 .918447

.60 .35 .956414 .916341

•70 .30 .956626 .910792

.80 .25 .958021 .904768

.i0 .70 .964749 .941327

.20 .60 .965405 .941224

.30 .50 .965622 .941692

.40 .45 .969453 .942353

.50 .35 .952327 .909015

.60 .35 .974264 .943948

.70 .30 .978949 .911801

.80 .25 .975411 .934598



TABLE II (Continued)
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a ca P2(n,a,ca) P2(n,a,ca-.05)

a...05, n.,30

a-. 05, n-35

affi.05, n_40

affi.05, n=45

a=.05, n=50

.i0 .70 .963840 .939972

.20 .55 .958233 .929810

.30 .45 .951725 .916158

.40 .40 .960372 .925087

.50 .35 .962992 .924601

.60 .30 .962061 .916786

.70 .25 .958727 .901457

.80 .20 .954656 .877856

.I0 .65 .964611 .940609

.20 .55 .970125 .946495

.30 .45 .969998 .942496

.40 .40 .972557 .943617

.50 .35 .977809 .948847

.60 .30 .974124 .936977

• 70 .25 .975268 .931165

.80 .20 .968336 .902808

.i0 .65 .963905 .939559

.20 .50 .959016 .928641

.30 .40 .950168 .909502

.40 .35 .957339 .914798

.50 .30 .957385 .907631

.60 .25 .952016 .887615

.70 .25 .980308 .940771

.80 .20 .977764 .922296

.i0 .60 .960332 .933717

.20 .50 .968484 .942157

.30 .40 .965362 .931718

.40 .35 .967584 .930646

.50 .25 .970689 .929615

.60 .25 .963310 .906416

.70 .20 .958029 .878686

.80 .20 .984314 .937637

.I0 .60 .959693 .932785

.20 .45 .952971 .917080

.30 .40 .969891 .938614

.40 .35 .975283 .943368

.50 .30 .975488 .937969

.60 .25 .971847 .921834

.70 .20 .963801 .888918

.80 .20 .988893 .949790



TABLE II _Continued)
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a c P2(n,a,c a) P2(n,a,c -.05)

a=.02, n=5

a,,.32, n-lO

a=.02, n=15

a=.02, nffi20

a-.02, n=25

.i0 .85 .981385 .952246

.20 .85 .981385 .952246

•30 .80 .984893 .971408
• 40 .80 .984893 .971508
• 50 .70 .985958 .974771
.60 .70 .985958 .974771
• 70 .55 .981547 .968750
• 80 .55 .981547 .968750

• 10 .85 .980235 .971879
.20 .85 .982748 .973956
.30 .75 .985828 .972898
.40 .70 .988984 .978396
.50 .60 .981661 .966641
• 60 .55 .984048 .970083
.70 .50 .986393 .973507
.80 .45 .985482 .978336

.10 .80 .984328 .958954

.20 .75 .983217 .968381
• 30 .65 .985883 .972849
• 40 .60 .985338 .971711
.50 .50 .981762 .964616
.60 .50 .990041 .978728
.70 .40 .986281 .970060
.80 .35 .984402 .964953

.10 .80 .982607 .957422

.20 .70 .983486 .968828

.30 .60 .981405 .965060

.40 .55 .986774 .973145

.50 .50 .989461 .977107

.60 .45 .991055 .979225

.70 .35 .980803 .956626

.80 .30 .983230 .958021

.10 .75 .981075 .964749

.20 .65 .981485 .965405

.30 .55 .983624 .967622

.40 .50 .985307 .969453

.50 .45 .990277 .977271

.60 .40 .989422 .974264
• 70 .35 .992451 .978949
.80 .30 .991839 .975411



TABLE II (Continued)
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a cu P2(n,a,_ ) P2 (n,a, eu-.05)

u-.02, n-30

=.02, nffi35

_=.02, nffi40

_=.02, nffi45

aft.02, n=50

• 10 .75 .982949 .970413
• 20 .65 .988893 .977233
• 30 .55 .987852 .974495
• 40 .45 .980987 .960372
.50 .40 .983692 .962992
.60 .35 .984632 .962061
.70 .30 .984826 .958727
.80 .25 .985441 .954656

.10 .70 .980974 .964611

.20 .60 .984911 .970125

.30 .50 .985892 .969998

.40 .45 .988072 .972557

.50 .40 .991543 .977809
• 60 .35 .990746 .974124
• 70 .30 .992404 .975268
.80 .25 .991309 .968336

.10 .70 .980548 .963905

.20 .60 .989944 .978519

.30 .50 .988832 .975046

.40 .40 .980885 .957339

.50 .35 .982673 .957385

.60 .30 .982247 .952016

.70 .25 .980308 .940771

.80 .25 .994779 .977764

.10 .70 .989597 .978393

.20 .50 .987732 .972966

.30 .45 .984264 .965362

.40 .40 .986624 .967584

.50 .35 .989452 .970689

.60 .30 .987762 .963310

.70 .25 .988005 .958029

.80 .20 .984314 .937637

.10 .65 .989383 .977999

.20 .55 .988762 .975686

.30 .45 .986868 .969891

.40 .40 .990604 .975283

.50 .35 .991730 .975488

.60 .30 .991.531 .971847

.70 .25 .990424 .963801

.80 .20 .988893 .949790



TABLE II _Continued)
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a ca P2(n'a'c a ) P2(n'a'c -.05)

a-.Ol, n-5

a=.Ol, n=lO

a=.Ol, n=15

a=.Ol, n=20

a=.Ol, n=25

.10 .90 .990083 .981385

• 20 .90 .990083 .981385

.30 .85 .991471 .984893

.40 .85 .991471 .984893

.50 .75 .993023 .985958

• 60 .75 .993023 .985958

.70 .65 .994748 .989760

.80 .65 .994748 .989760

.10 .90 .990927 .980235

.20 .90 .990927 .980235

•30 .80 .993711 .985828

.40 .75 .995128 .988984

.50 .65 .990850 .981661

.60 .60 .992230 .984048

•70 .55 .993579 .986393

.80 .50 .995240 .989438

• 10 .90 .995244 .984328

.20 .80 .992436 .983217

.30 .70 .993525 .985883

• 40 .65 .993213 .985338

.50 .55 .991460 .981762

.60 .50 .990041 .978728

.70 .45 .994274 .986281

.80 .40 .993642 .984402

.I0 .85 .995824 .982607

.20 .75 .992405 .983486

.30 .65 .991535 .981405

.40 .60 .994199 .986774

.50 .55 .995687 .989461

.60 .45 .991055 .979225

.70 .40 .992347 .980803

.80 .35 .993977 .983230

.i0 .80 .991370 .981075

.20 .70 .991249 .981485

.30 .60 .992616 .983624

.40 .55 .993708 .985307

.50 .45 .990277 .977271

.60 .45 .996168 .989422

.70 .35 .992451 .978949

.80 .30 .991839 .975411



TABLE II (Continued)
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a ca P2(n,a,ca) P2(n,a,ca-.05 )

a'.01, n=30

ct=.01, n=35

a=.01, n=40

a=.Ol, nffi45

a=.Ol, n=50

.10 .80 .991278 .982949

.20 .70 .995314 .988893

.30 .60 .994906 .987852

.40 .50 .991869 .980987

.50 .45 .993652 .983692

.60 .40 .994548 .984632

.70 .35 .995159 .984826

.80 .30 .995981 .985441

.10 .75 .990114 .980975

.20 .65 .993288 .984911

.30 .55 .994146 .985892

.40 .50 .995461 .988072

.50 .40 .991543 .977809

.60 .35 .990746 .974124

.70 .30 .992404 .975268

.80 .25 .991309 .968336

.i0 .75 .990892 .980548

.20 .65 .995920 .989944

.30 .55 .995635 .988832

.40 .45 .992470 .980885

.50 .40 .993895 .982673

.60 .35 .994392 .982247

.70 .30 .994507 .980308

.80 .25 .994779 .977764

.10 .75 .995770 .989597

.20 .60 .993268 .984490

.30 .50 .993725 .984264

.40 .45 .995222 .986624

.50 .40 .996782 .989452

.60 .35 .996584 .987762

.70 .30 .997200 .988005

.80 .25 .996848 .984314

.10 .75 .995673 .989384

.20 .60 .995477 .988762

.30 .50 .995016 .98686

.40 .40 .990604 .975283

.50 .35 .991730 .975488

.60 .30 .991531 .971847

.70 .25 .990424 .963801

.80 .25 .998089 .988893
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Summary

_le study of distributions with decreasing mean residual life (DMR) has

received little attention in the literature (Barlow, Marshall and Proschan /2],

Watson and Wells [i_ ). It is well known that this class of distributions contains

the class with increasing hazard rate (IHR), which is studied in the literature

in considerable detail. In this chapter, starting with a DMR distribution,

a sequence of distributions is constructed that preserves the DMR property.

It is further shown that this sequence of distributions converges to a

stable limit that has very interesting properties. It also turns out that

the only distribution which exactly reproduces itself in this sequence is the

exponential distribution, which thus may be looked upon as the boundary

distribution between DMR and IMR (increasing mean residual life) distributions.

It is believed that several inequalities derived under the INR assumption

could be derived under the weaker assumption of the DMR property. As an

illustration, an inequality which was derived previously under the IHR

assumption is shown to be true for any arbitrary failure distribution.

Introduction and Notation

Lett TO -> 0 be a nonnegative random variable with PIT 0 <__t] = Fo(t) =

f fo(t)dt where Fo(t ) and fo(t) are respectively the distribution function and

0



it

9O

Clearly

Fl(t) = l-Rl(t ) (19o)

is a distribution function of a random variable, say, T 1 which is induced by

T O . Let us write

t

-f nl (x) dx

Fl(t)__ = l-e 0
(191)

where, in accordance with (184), nl(t ) is the hazard rate associated with T I.

Now

t

UO (t) -f nl(X)dx '

- e 0

_0 (0) (192)

Therefore

_0(t) ilog - - nl (x)dx
_o(O)

0

Differentiating with respect to t both sides, we get

_0(0) _(t) _(t)

_0 (t) _0 (0) _o(t)
-hi(t) ,

where differentiation with respect to t is denoted by a prime.

R0(t) i
nl(t ) -

_0 (t) ,l(t) " (193)
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Clearly

Fl(t) = l-Rl(t ) (zgo)

is a distribution function of a random variable, say, T1 which is induced by

TO . Let us write

t

-I _l(X)dx

Fl(t) = l-e 0 (191)

where, in accordance with (184), nl(t) is the hazard rate associated with T I.

Now

t

_0 (t) -I nl(X)dx '

_0(0 ) - e 0 (192)

Therefore

log

t
u0(t)

N0(0) - I nl(X)dx '

0

Differentiating with respect to t both sides, we get

_0(0) _(t) _(t)

_(t) _0(0) - _0(t) - -_i (t) '

where differentiation with respect to t is denoted by a prime.

R0(t) i

nl(t) - No(t ) - _l(t) (193)
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Thus the hazard rate nl(t) of the random variable T I is the reciprocal

of the mean residual life of the given random variable TO . For consistency

of concept we define

1

_0(t) - Z0(t ) ,
which implies

_o(t) = Z0(t) •
(194)

Generalizing (189) we define the distribution function Fk(t) of the random

variable TK (induced by the given random variable TO), by

FK(t ) = l-_(t) = i-

_K_I (t)

(195)

where

cO

_K-l(t) = I RK-l(X)dx '

t

K = 1,2,3, ..... ,

(196)

and

_K_I(O) = E(TK_ I) • (197_

Writing

t

I
FK(t)__ = l-e 0

qK(X)dx (198)
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one obtains for the hazard rate _K(t) associated with TK

RK_l(t)

HE(t) - _K_l(t ) _K_l (t) '

(199)

which shows that the mean residual life _K(t) of the random variable TK_ I

is related to nK(t) by

OO

I RK_l(X)dx
_K-I (t) t i

_K(t) -- __l(t) = RK_I(t ) = _K(t----_ •
(200)

Assuming that the density exists, differentiating (195) with respect to t, one

one obtains for fK(t) the probability density function of TK that

RK_I(t)

fK (t) = (0) '
UK-I

K=I,2, .... (201)

Equation (201) shows that fk(t) is a decreasing function of t for all K = 1,2,3, ....

Starting from the given random variable TO we have thus generated a

sequence {TK} K=I,2,... of random variables, whose distribution functions and

associated properties have the representations discussed above.

Properties of the Class of Distributions FK(t)

In this section we will prove that if the given random variable TO has a

distribution with DMR property, then the induced sequence of random variables

TK, K=I,2,...,_, will all have distributions with the DMR property. To prove

this we need the following Lemma.
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Lemma 5

_(t)-_K(t)nK_l(t)+l = 0, K--I,2,3, .... (202)

Proof

By definition from (200),

VK(t)__l (t) = PK-I(t) = i _-l(X)dx "

Differentiating both sides with respect to t,we obtain

_K(t)RK-I (t)-_K(t) fK-I (t) = -RE_ l(t),

which implies

_(t)-_K(t )nK_l(t)+l = 0.

Putting K=I in the lemma, one obtains

Di(t)-_l(t)Z0(t)+l = 0, where (203)

Z0(t) and Vl(t) are respectively the hazard rate and mean residual life of the

given random variable r0. Equation (203) was obtained by W. R. Knight [6J .

We will now prove the following:

._Theot,_m 6
%

F0(t) is DMR implies FK(t) is DNR, K = 1,2,.o.,®o



95

Proof

We will prove the theorem by showing that 7K_l(t) is decreasing in t will

imply that _K(t) is decreasing in t which, combined with the assumption _l(t) is

decreasing in t, proves the theorem.

We have from (200) that

OO

_K(t) = I _-l(X)dx/_-l(t)

t

(204)

Multiplying both sides by RK_2(t),

_K(t)RK_2 (t) -

RK_2 (t)

RK_I (t)

OO

RK_ I (x)

I RK_ 2(x) RK-m(x) dx .

t

(205)

By definition from (199) we have

nK_l (t) =

RK_2 (t)

oo

I _-2 (x) dx

t

RK_2(t)

_ K_2 (0)__l(t) '
(206)

since

OO OO

_K-2(t) = I RK-2(x)dx = I _K-2(0) fK-l(t)dt

t t

from equation (201).



96

Substituting from (206) in (205) we have

O0

VK(t)RK-2(t) = _K 2(0)nK i(t) (0) (x) RK-2(x)dx
- - _K-2 nK-1

t

(207)

CO

= _K-l(t) I i _ 2(x)dx
hE_ 1 (x) -

t

CO

I
t

Since _K_l(t) is assumed to be decreasing in t, equation (207) becomes

CO

_K(t)RK-2 --<I _-2(x)dx '

t

which implies from (199) that

VK(t)_K_l(t) ! i (208)

Now from Lermna 5,

VK(t)nK_l(t) = l+v_(t) (209)

Combining (208) and (209, we discover that

_(t) _<0 , (210)

which implies that VK(t) is decreasing in t.
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Convergence of the Sequence of Distribution {FK(t)}

We will first prove that the sequence of mean residual times {YK(t)}

associated with the sequence of distributions {FK(t)} forms a monotonic decreasing

sequence when the given distribution F0(t ) has the DMR property. From equation

(202 we obtain

i
!

VK(t)-_K(t) (t)+l = 0 ,
"°K_ 1

which reduces to

_K(t)-_K_l(t)

_(t) = (t) "
_K-I

(211)

Since by inequality (211) y_(t) _ 0, in view of equation (211) we discover

that

_K(t) < VK_l(t) , K = 1,2,...,_ . (212)

Now from equation (198),

I i- --dx
K(x)

0

FK(t) = l-e (213)

From (212) we have

t t

0 VK(X) 0 (K-I (x)

dx
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which implies that

FK(t) _ FK_I(t),
Oo

K _ 1,2, e • • , • (214)

Thus the sequence of distributions {FK(t)} is a monotonic increasing sequence,

being uniformly bounded by unity; the sequence therefore converges to a limiting

function F (t) which is a distribution function by a well-known theorem of

Helly.

Defining the characteristic function of the random variable TK by

iTKU I_K(U) = E(e ) = eiXu fK(X)dx (215)

0

and using the relation (201) one can deduce the following recursive relation

satisfied by the sequence of characteristic functions {_K_l(U)} :

iu _K_I(0)_K(U) = _K_l(U)-i • (216)

From (214) it follows that

RE(t) !RK_1(t) ,

and therefore

0 ! bE(0) = I _(x)dx ! _K_l (0) •

0

Equation (217) implies that the sequence {_K(0)}

{TK} converges to a limit denoted by _.

(217)

of means of the random variables
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In view of (216) and the existence of _® and the continuity theorem on

fu o io ,[  ollo. tha limiting

characteristic function _ (u) is given by

i

_ (u) - l-iu ' (218)

which is the characteristic function of an exponential random variable with

mean _ . This limiting distribution will degenerate to a singular distribution

when _= = 0. Thus we have proved the following:

Theorem 7

The sequence of distributions {FK(t)} K = 1,2,...= generated from a _ven

DMR distribution Fo(t) converges either to a singular distribution or to an

exponential distribution.

Examples

Example I

Let F0(x) be an exponential distribution given by

Fo(X ) = l_e -%x . (219)

From (195) and (196) it follows that

FK(t) =

t

RK_ (x) dx

0

UK_I (0)

t

I (I_FK_I (x)) dx

0

BK_I (0)
(220)
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In this case

Fl(X) : l_e -Ix : F0(x)

and also

FK(X) = F0(x) for all K.

We will now characterize the exponential distribution by this property.

Suppose any two successive members of the sequence {FK(t)} are identical, i.e.,

FK(t) = FK_I(t) for some K _ i . (221)

Equation (221) implies that

_K(O) - E(TK) = _K_I(0) = E(TK_ I) • (222)

Using (220), (221) and (222) we obtain

t

FK(t) = I (l-FK(X)dX/_K(0) "

0

(223)

Differentiating equation (223) we obtain that

fK (t) i

I_FK(t ) - UK(0 ) '
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which is true if and only if

FK(t) = l-e

i
t

_K (0)
(224)

From (224) and the definition of FK+I(t) it follows that

FK(t) = FK+I(t) = FK+2(t) = ....

It remains to be shown that FK_2(t) and all previous members of the sequence

{FK(t ) } are exponential. Writing (K-l) for K in (220) and differentiating, it

follows that

i

fK_l(t) - (l-F K 2(t))
_K_2(O)

i

_K_I (0)

t
N

PK-I
e

(225)

Putting t = 0 in (225) we discover that

_K_I(O) = _K_2(0) • (226)

Combining (225) and (226) we finally obtain

t

_K-I

FK_ 2(t) = l-e
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It is clear that in a similar manner all the distributions have to be exponential.

Wehave thus proved:

Theorem 8

The sequence {FK(t)} is identically exponentially distributed if and

only if for some K _ i, FK(t) = FK_I(t).

Example 2

F0(x) = x , 0 _< x _< i .

It can be easily seen that

2

Fl(t) = l-(l-t) , 0 _< t _< i,

fl(t) = 2(l-t), 0 ! t ! i ,

and more generally,

F (t) = l-(l-t) n+l, 0 < t < i
n -- --

f (t) = (n+l)(l-t) n, 0 < t < 1
n -- --

_n(O) = i/(n+2)

Z (t) = (n+l)/(1-t)
n

(t) = (1-t)/(n+2) .
n

In this case F (t) converges to a degenerate distribution with all the mass
n

concentrated at the origin.
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An Inequality For Arbitrary =ailure Distribution

One form of the following inequality for the expectation of a random

variable is proved by Barlow [I], under the assumption that the distribution

function of the random variable has an increasing hazard rate. We shall

establish the following inequality in general.

Theorem 9

Let X be a random variable with probability density function f(x), and

let EIX I < _ Then

t co

_oD

< E(X) < x
-- -- P[X > x] '

P[X _ x]

(227)

Proof

E(X) =

oo

t f (t)dt

--O3

xI t f(t)dt + t f(t)dt

--oo X

(228)

Also,

E(X) = {P[X > x] + P[X < x]}

oo

t f(t)dt . (229)
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So, from (228) and (229) we have,

oo x

t f(t)dt - P[X < x] t f(t)dt

--OO _OO

+

OO

P[X < x] t f(t)dt - P[X > x]

x

t f(t)d .

--OO

(230)

Thus we see from (230) that

OO OO

I t f(t)dt < [e X > x] I t f(t)dt

x _co

x

t f(t)dt < P[X < x] t f(t)dt

uOO uoo

(231)

Therefore it suffices to prove only one of the inequalities in (227).

break up the range of X into two parts: E(X) _< x and E(X) > x. When

E(X) _ x, we have

OO OO

I t f(t)dt > X I f(t_dt _ x[e X > z] _

x x

Let us

P[X > x]

O0

I t f(t)dt > x > E(X) .

x

(232)
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WhenE(X) > x, we have

X X

I t f(t)dt < x I f(t)dt = x P[X < x] < E(X) P[X < x] ;

--oo --OO

X

E(X) - I t f(t)dt > E(X) - E(X) P[X < x] ,

--eo

or

i

P[X > x]

_0

I t f(t)dt > E(X)

X

(233)

(232) and (233) to_ether prove the first part of (231), which implies the

second part.
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C_ VIII

OPTIMUM ESTIMATION OF THE LAW OF FAILURES

Consider the estimate

fn(to) =foC°BnK(Bn(T- to))dFn (T)

B
n

i1

n

- X K(Bn,T )
j=l

fcr estimating the density f(t) of the underlying law of failures, where

TI, T2, ... T n are the observed times to failure of the n items put to a

life test, and t o is a point of continuity of the u_Aerlylng law of failures.

(234)

val around t = t .
o

Choose the weight function K(t) such that it vanishes outside a finite inter-

More specifically, let

K(t) = o for It - tol > h

where h > o is ar_y finite real number.

(235)

In view of the results obtained in Chapter II on fn(to),

that
t +h
o

lirnE(fn(to) ) = f(to ) f K(t) dt
t -h

o

it follows

(236)

and

t +h
o

lim [# Var (fn(to))] = f(t O) f
n -*_ n t -h

o

K 2 (t) dt (237)
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From equation (236) the condition for asymptotic unbiasedaess on the weight

function K(t) is that

t +h

fo
t -h

0

K(t) dt : 1.

Let us now impose a condition on the spread, or equivalently the

'bandwidth," of the might function K(t). One measure of the bandwidth of

K(t) is its variance or the second moment about its mean. Denoting this

quantity by B, _we have

(23s)

t +h

o )Z
B = f (t - to K(t) dt

t -h
O

Therefore,

t +h

= f o tZK(t) dt - t 2o

t -h
o

t +h
o 2 2

f t K(t)dt = B + t o
t -h

o

(239)

(24n)
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Definltion af O_tlmum Estimate far the

Underlying Lay of Failures
, i i i ,|i

Fc_ a given sample and a given sequence {Bn], the estlmmte fo_ the density

f(to) at t = to depends only on the weight function c_ window K(t).

Choose K(t) such that the cc_responding estimate fn(tO) has minimum

asymptotic variance subject to the conditions of asymptotic unbiasedness and

a given bandwidth. Such estimates fc_ the density of the underlying law

of failures are called optimum estimates.

The existence of a weight function realizing the above requirement is evident

from the fact that the set of all distributions with a bounded second moment

is compact.

Optimum weight functions can now be obtained: Namely, the weight function

K(t) which is ncanegative, satisfies equetions (238) and (240) far a given

B = Bo, and renders
t +h
o

g Z (t)dt a minimum.

t -h
o

The following _ll-known lemma from the calculus of variations can now be

used.

(241)

Lemma lO

Let
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/ ( dK)WI(K ) = G 1 t, K, -_- dt- C 1 = o (B),

dK =WzlK) : G 2 (t, K, -_-)dt - G 2 0 (C).

(242)

(243)

(244)

Then the function K(t), which minimizes the functional (A) subject to the

conditions (B) and (C), is given by the Euler-Lagrange differential equation

O (F-k G-k GZ)]=0OK g

where the symbol prime denotes differentiation with respect to t, and _,

X2 are the Lagrangian m_itipliers which are determined by the two conditions

(B) and (C). The lemma also assumes that

aG i a /8Gi]

oK _\_:K,/_ o, _ = 1, z.

To obtain the optimum might function K(t), apply the lemma with

F (t, K, K') : KZ(t),

G 1 (t, K, K') = K(t),

G z (t, K, K') : t 2 K(t),

- + h).and the interval (a, b) is the interval (t O h, to

Lagrange differential equation in this case is

The Euler-

(245)

(246)

(247)

_ [K Z - kl K- kz tZ K1 = 0
(248)
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Hence,

K(t) = A + B t P_, (249)

where we have written A and B fc_ _/2 and k2/2 , respectively. A and B are

determined from the conditions of equations (238) and (240). Th_

ft + h (A + B t 2) dt = 1 ,

t -h
O

t +h

f o t 2 (A + B t2)dt = B + t 2

t -h o o
O

Simplyfying equation (&_O), A and B are given by

(250)

A

B ._

(to+ h)5- (to - h) 5 - (Be+ to Z)

5 3
[(to+ -

"_/(to+ h) 5 - (t o - h)5) - _ [(to+ h) 3 " (t o - h)lZ

to h  -<to-h
"_ [(to+ h) 5 - (to- h)5 ] - _ [(to+ h) 3 - (to -h)3] 2

(251)

(252)

Now suppose that the weight function K(t) is constant in the time interval

(to- h, to + h). Then

1

K(t)- 2h '
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since

t + h

t -h
0

K(t) dt : 1

Also, fram equation (239),

B
O

t +h

=f zo t z K(t) dt - t o
t -h

0

(253)

(to+ h)3 -(to -h)3 Z
6h " to

(254)

Substituting far B ° frcm equation (254) in B given by equation (252), it is

found that B is identically zero• Also substituting far B° from equation

(254) in A given by equation (251), it is found that

1
A mm m •

2h

Thus, the rectangular window

1
-h<t<t +h

K(t) - 2h for to - - o

= 0 otherwise

is optimum far estimating the underlying law of failures far large samples.

Optimum estimates far the underlying law of failures, using other plausible

restrictions, can be obtained in a simila_ manner.
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CONCLUDING REMARKS
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In the first three chapters of this report a number of asymptotic results

have been obtained which deal with estimation and confidence bands for life

distributions, their probability densities, and hazard functions, based on

random samples, as well as on censored and truncated samples. As is

frequently the case with asymptotic procedures, certain pertinent questions

still need answering. How large must the sample sizes be under any one of

these procedures, to make the asymptotic results practically applicable?

Is it possible to replace the asymptotic results by exact small-sample

results? While the second question appears very difficult to answer, informa-

tion leading to answers to the first question is most likely obtainable by

the use of Monte Carlo techniques, and studies of this kind should be under-

taken in the future.

In Chapter V the meanin_ and the importance of Jumps of the distribution

function of llfe lengths have been discussed, and a test procedure has been

proposed which makes it possible to conclude whether a given life distri-

bution has points of discontinuity or not. This procedure, however, does

not offer a hint as to the time instant at which those Jumps occur. Since

these time instants are the times of instantaneous increase of the hazard,

it would be of considerable practical importance to be able to estimate their

location on the time axis. This, again, constitutes an open problem which

should be investigated.
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For the R_nyi-type statistics discussed in Chapter VI, the exact distri-

butions for finite sample sizes are available, as well as the asymptotic

distributions for large samples. Twosuch statistics have been explored

in detail and numerical tables have been computedwhich make it possible to

use them in practical situations. Both of these statistics could be used

for the samekinds of problems, and the question has not been answered which

of the two statistics is preferable. It appears likely that this question

can be answered by analytic methods, by studying the relative asymptotic

efficiencles of these two statistics. Should these methods fail, a Monte

Carlo study would always be an alternate route to the problem.

The family of DMRllfe distributions, discussed in Chapter VII, has a number

of theoretical properties which suggest that it may be capable of several

applications. No such applications, however, have been explored in the

present report, and a study of this kind should be undertaken in the future.

In Chapter Vlll the question of optimizing the asymptotic estimation

procedures discussed in Chapter II is raised. An answer to that question

in principle has been obtained in a form which, for a _Iven sequence of

constants Bm, determines the weight function K(t). An open problem

which should be further explored is that of determlnin_ the sequence of

the constants Bm in an optimal manner.
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